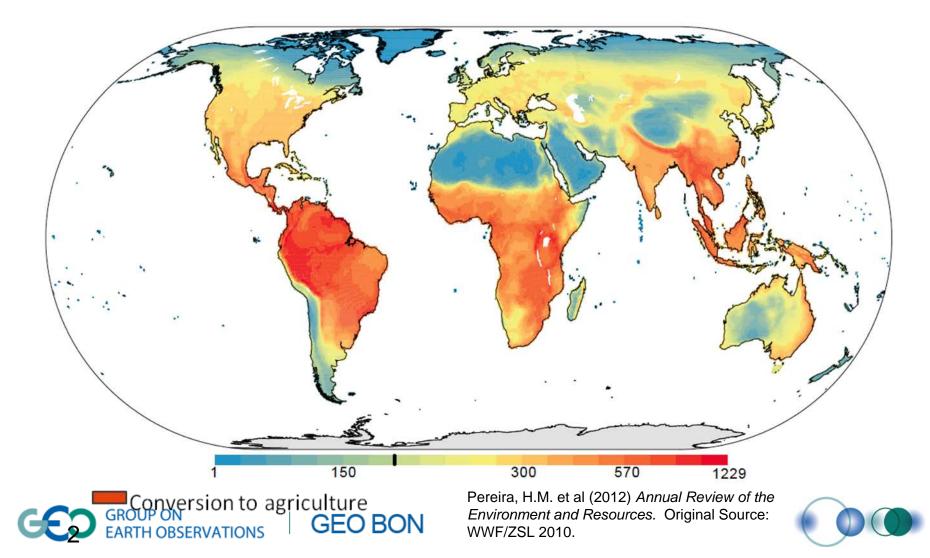


Towards Enhanced Global Biodiversity Observations: GEO BON

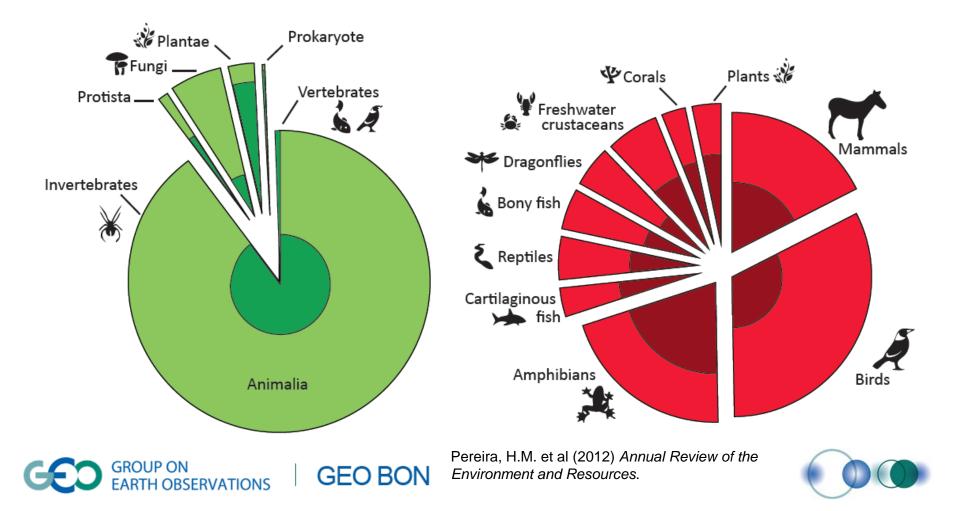
Mike Gill


Vice-Chair, Group on Earth Observations Biodiversity Observation Network

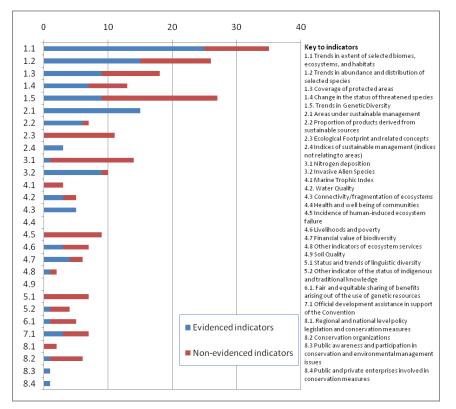
Future Earth Symposium on Global Biodiversity Monitoring

Yale University, May 4, 2015

Gaps in biodiversity monitoring


LVarteprate Species Pointages

Taxonomic gaps

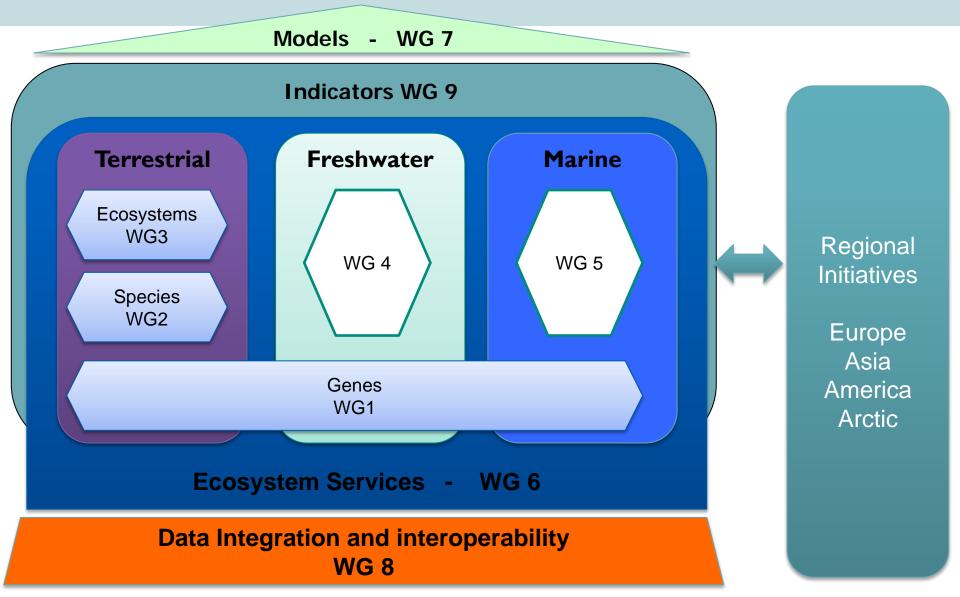

Estimated species richness

Species assessed in the Red List

Resulting in...

- Limited and often, illinformed conservation and development decisions
- Untapped potential for using earth observation data to support effective decisionmaking

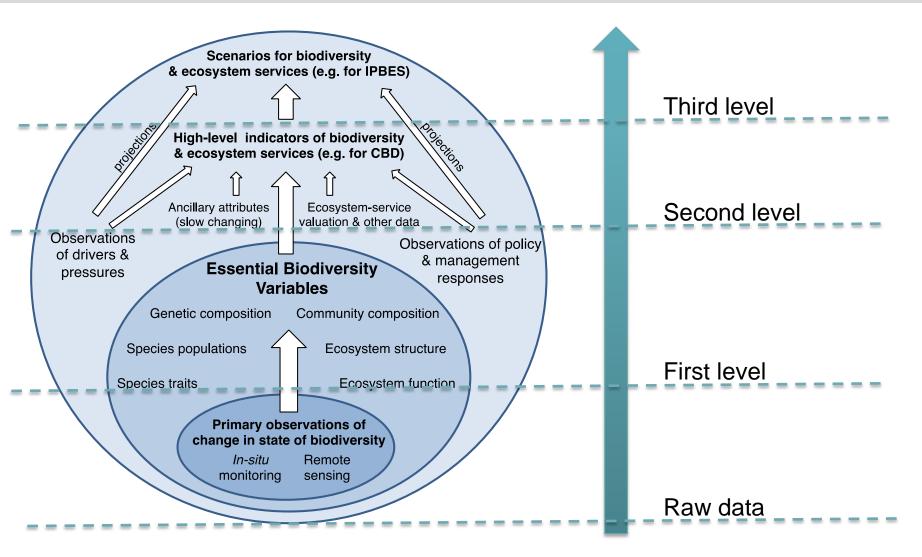
Bubb, P., et al. (2011) National Indicators, Monitoring and Reporting for the Strategic Plan for Biodiversity 2011-2020. UNEP-WCMC, Cambridge.



What is GEO BON?

Group on Earth Observations Biodiversity Observation Network THE GLOBAL EARTH OBSERVATION SYSTEM OF SYSTEMS Health Energy Climate INFORMATION FOR THE BENEFIT Agriculture OF SOCIETY Ecosystems Weather **Biodiversity** GROUP ON GEO BON EARTH OBSERVATIONS

GEO BON Structure



GEO BON Approach

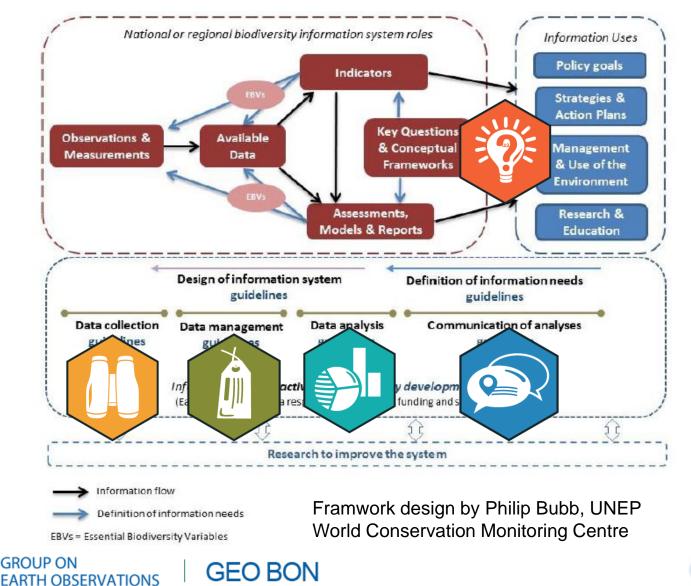
- Provide a robust, extensive and harmonized framework for biodiversity observations and systems that meet user needs
 - Top-Down approach:
 - Focus on a targeted set of variables (e.g. Essential Biodiversity Variables)
 - Bottom-Up (e.g. national and regional capacity building – BON in a Box)

What is an Essential Biodiversity Variable?

EXAMPLES OF CANDIDATE ESSENTIAL BIODIVERSITY VARIABLES

EBV class	EBV examples	Measurement and scalability	Temporal sensitivity	Feasibility	Relevance for CBD targets and indicators (1,9)
Genetic composition	Allelic diversity	Genotypes of selected species (e.g., endangered, domesticated) at representative locations.	Generation time	Data available for many species and for several locations, but little global systematic sampling.	Targets: 12, 13. Indicators: Trends in genetic diversity of selected species and of domesticated animals and cultivated plants; RLI.
Species populations	Abundances and distributions	Counts or presence surveys for groups of species easy to monitor or important for ES, over an extensive network of sites, complemented with incidental data.	1 to >10 years	Standardized counts under way for some taxa but geographically restricted. Presence data collected for more taxa. Ongoing data integration efforts (Global Biodiversity Information Facility, Map of Life).	Targets: 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15. Indicators: LPI; WBI; RLI; population and extinction risk trends of target species, forest specialists in forests under restoration, and species that provide ES; trends in invasive alien species; trends in climatic impacts on populations.
Species traits	Phenology	Timing of leaf coloration by RS, with in situ validation.	1 year	Several ongoing initiatives (Phenological Eyes Network, PhenoCam, etc.)	Targets: 10, 15. Indicators: Trends in extent and rate of shifts of boundaries of vulnerable ecosystems.
Community composition	Taxonomic diversity	Consistent multitaxa surveys and metagenomics at select locations.	5 to >10 years	Ongoing at intensive monitoring sites (opportunities for expansion). Metagenomics and hyperspectral RS emerging.	Targets: 8, 10, 14. Indicators: Trends in condition and vulnerability of ecosystems; trends in climatic impacts on community composition.
Ecosystem structure	Habitat structure	RS of cover (or biomass) by height (or depth) globally or regionally.	1 to 5 years	Global terrestrial maps available with RS (e.g., Light Detection and Ranging). Marine and freshwater habitats mapped by combining RS and in situ data.	Targets: 5, 11, 14, 15. Indicators: Extent of forest and forest types; mangrove extent; seagrass extent; extent of habitats that provide carbon storage.
Ecosystem function	Nutrient retention	Nutrient output/input ratios measured at select locations. Combine with RS to model regionally.	1 year	Intensive monitoring sites exist for N saturation in acid-deposition areas and P retention in affected rivers.	Targets: 5, 8, 14. Indicators: Trends in delivery of multiple ES; trends in condition and vulnerability of ecosystems.

Pereira, H.M. et al (2013) Science



Bottom-Up: National Capacity Building & BON-in-a-Box

- GEO BON is building a digital, customizable, 'smart' toolkit for biodiversity observations ('BON-in-a-Box')
- Purpose:
 - Lower the threshold for a nation or region to develop or enhance an existing Biodiversity Observation Network;
 - Improve and target biodiversity observations to better meet user (e.g. policy) needs;
 - Improve the power to detect & attribute biodiversity trends.
 - Foster **regional sharing** of best practices and technology
 - Advance interoperability promote uptake of harmonized observations, data management, analysis & reporting
- Working directly with nations to design national biodiversity observation systems

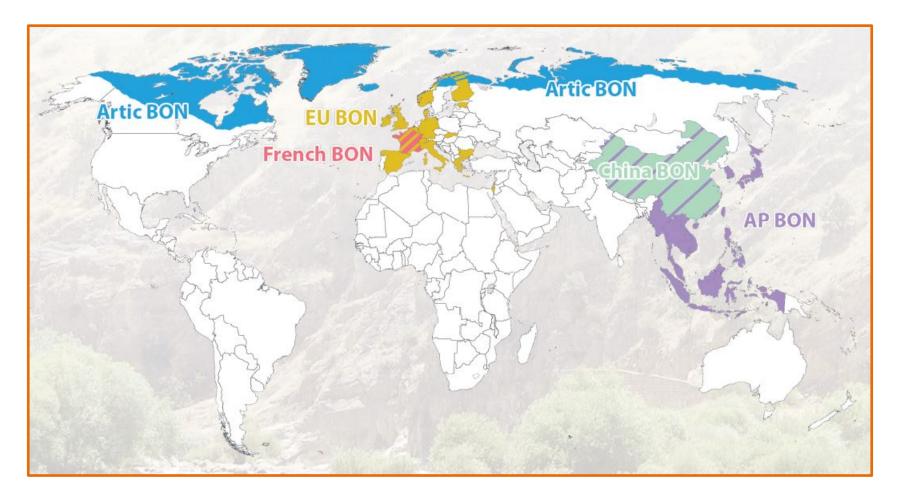
Framework for a National Biodiversity Information System

EARTH ODJERVATIONS

COMPONENTES DEL MONITOREO

DATA ANALYSIS Primeras preguntas claves en monitoreo

Bon in a Box es un set de herramientas en línea para monitoreo, customizable y en constante actualización. Todo esto con el motivo de facilitar el ínicio o la mejora de los sistemas de observación de la Biodiversidad.



GEO BON

Bottom-Up: National & Regional BONs

How can we best strengthen/complement ongoing efforts?

- **Connect them to user needs** Who are the users? What information do they need? How do we produce that information?
- **Provide common frameworks and tools** to connect biodiversity observations scalable from local to national to global scale
- Focus on value-added: for scientists, decision-makers & public

Ideas for Symposium Discussion/Cluster Activities

- How do we connect global initiatives and data to local or national scales and vice-versa?
 - Downscaling models/disaggregating global datasets/regionalization of tools
 - How do we scale up to the global scale?
 Aggregating local /national datasets? Tools to facilitate interoperable data?

Thanks!

Photos by: Kathy Crane, US NOAA; Maria Cecilia Londoño, Instituto Humboldt, Carsten Egevang, ARC-PIC.COM

